A CERTAIN FAMILY OF FRACTIONAL\\ DIFFERINTEGRAL EQUATIONS

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solutions of Certain Fractional Kinetic Equations and a Fractional Diffusion Equation

In view of the usefulness and importance of the kinetic equation in certain physical problems, the authors derive the explicit solution of a fractional kinetic equation of general character, that unifies and extends earlier results. Further, an alternative shorter method based on a result developed by the authors is given to derive the solution of a fractional diffusion equation.

متن کامل

On certain time- and space-fractional evolution equations

In this article, we present first a new technique to prove, in a general case, the recent result of Cazenave, Dickstein and Weissler [6] on the blowing-up solutions to a temporally nonlocal nonlinear parabolic equation. Then, we study the blow-up rate and the global existence in time of the solutions. Furthermore, we show necessary conditions for global existence.

متن کامل

On a subclass of multivalent analytic functions associated with an extended fractional differintegral operator

Making use of an extended fractional differintegral operator ( introduced recently by Patel and Mishra), we introduce a new subclass of multivalent analytic functions and investigate certain interesting properties of this subclass.

متن کامل

A fractional type of the Chebyshev polynomials for approximation of solution of linear fractional differential equations

In this paper we introduce a type of fractional-order polynomials based on the classical Chebyshev polynomials of the second kind (FCSs). Also we construct the operational matrix of fractional derivative of order $ gamma $ in the Caputo for FCSs and show that this matrix with the Tau method are utilized to reduce the solution of some fractional-order differential equations.

متن کامل

A Meshless Method for Numerical Solution of Fractional Differential Equations

In this paper, a technique generally known as meshless numerical scheme for solving fractional dierential equations isconsidered. We approximate the exact solution by use of Radial Basis Function(RBF) collocation method. This techniqueplays an important role to reduce a fractional dierential equation to a system of equations. The numerical results demonstrate the accuracy and ability of this me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Taiwanese Journal of Mathematics

سال: 2000

ISSN: 1027-5487

DOI: 10.11650/twjm/1500407258